top of page

Quantifying Energetic Particle Precipitation Driven by Magnetospheric Waves

Particle precipitation into the upper atmosphere is an important loss process in the Earth's inner magnetosphere and the driver of pulsating and diffuse aurora. Magnetospheric waves, which play a dominant role in causing energetic electron precipitation loss, include whistler-mode chorus, plasmaspheric hiss, and ElectroMagnetic Ion Cyclotron (EMIC) waves. We study the quantitative roles of chorus, hiss, and EMIC waves in energetic electron precipitation using conjugate satellite observations (Van Allen Probes, THEMIS, POES, FIREBIRD) and modeling.

Electrons precipitating into the upper atmosphere through pitch angle

scattering by whistler-mode chorus waves [Li et al., GRL, 2013].

Selected Publications on This Topic:

  • Li, W., J. Bortnik, Y. Nishimura, R. M. Thorne, and V. Angelopoulos, The origin of pulsating aurora: modulated whistler mode chorus waves (2012), in Auroral phenomenology and magnetospheric processes: Earth and other planets, Geophys. Monogr. Ser., Vol. 197, edited by Andreas Keiling, Eric Donovan, Fran Bagenal, and Tomas Karlsson, pp. 379-388, AGU, Washington D. C.

  • Li, W., B. Ni, R. M. Thorne, J. Bortnik, J. C. Green, C. A. Kletzing, W. S. Kurth, and G. B. Hospodarsky (2013), Constructing the global distribution of chorus wave intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes, Geophys. Res. Lett., 40,4526–4532, doi:10.1002/grl.50920.

  • Li, W., B. Ni, R. M. Thorne, J. Bortnik, Y. Nishimura, J. C. Green, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, H. E. Spence, G. D. Reeves, J. B. Blake, J. F. Fennell, S. G. Claudepierre, and X. Gu (2014), Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis, Geophys. Res. Lett., 41, 1085–1092, doi:10.1002/2013GL059132.

  • Li, W., et al. (2014), Evidence of stronger pitch angle scattering loss caused by oblique whistler-mode waves as compared with quasi-parallel waves, Geophys. Res. Lett., 41, 6063-6070, doi:10.1002/2014GL061260.

  • Nishimura, Y., J. Bortnik, W. Li, R. M. Thorne, L. R. Lyons, V. Angelopoulos, S. B. Mende, J. W. Bonnell, O. Le Contel, C. Cully, R. Ergun, U. Auster (2010), Identifying the driver of pulsating aurora, Science, 330 (6000), doi:10.1126/science.1193186, 81-84.

  • Nishimura, Y., J. Bortnik, W. Li, R. M. Thorne, L. Lyons, V. Angelopoulos, S. B. Mende, J. Bonnell, O. Le Contel, C. Cully, R Ergun, and U. Auster (2011), Estimation of magnetic field mapping accuracy using the pulsating aurora-chorus connection, Geophys. Res. Lett., 38, L14110, doi:10.1029/2011GL048281.

  • Nishimura, T., J. Bortnik, W. Li, R. M. Thorne, B. Ni, L. R. Lyons, V. Angelopoulos, Y. Ebihara, J. W. Bonnell, O. Le Contel, and H.-U. Auster (2013), Structures of dayside whistler-mode waves deduced from conjugate diffuse aurora, J. Geophys. Res. Space Physics, 118, 664–673, doi:10.1029/2012JA018242.

  • Nishimura, Y., J. Bortnik, W. Li, L. R. Lyons, E. F. Donovan, V. Angelopoulos, and S. B. Mende (2014), Evolution of nightside subauroral proton aurora caused by transient plasma sheet flows, J. Geophys. Res. Space Physics, 119, 5295–5304, doi:10.1002/2014JA020029.

  • Ni, B., W. Li, R. M. Thorne, J. Bortnik, J. C. Green, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, and M. de Soria-Santacruz (2014), A novel technique to construct the global distribution of whistler mode chorus wave intensity using low-altitud68e POES electron data, J. Geophys. Res. Space Physics, 119, 5685–5699, doi:10.1002/2014JA019935.

  • Zhang, X.-J., W. Li, Q. Ma, R. M. Thorne, V. Angelopoulos, J. Bortnik, L. Chen, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, et al. (2016), Direct Evidence for EMIC Wave Scattering of Relativistic Electrons in Space, J. Geophys. Res. Space Physics, 121, 6620–6631, doi:10.1002/2016JA022521.

  • Nishimura, Y., Bortnik, J., Li, W., Angelopoulos, V., Donovan, E. F., & Spanswick, E. L. (2018). Comment on “Pulsating auroras produced by interactions of electrons and time domain structures” by Mozer et al. Journal of Geophysical Research: Space Physics, 123, 2064–2070. https://doi.org/10.1002/2017JA024844.

  • Capannolo, L., Li, W., Ma, Q.*, Zhang, X.‐J., Redmon, R. J., Rodriguez, J. V., et al (2018). Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multi‐Satellite Measurements. Geophysical Research Letters, 45, 6755–6765. https://doi.org/10.1029/2018GL078604

  • Capannolo, L., Li, W., Ma, Q.*, Shen, X.‐C.*, Zhang, X.‐J., Redmon, R. J., et al (2019). Energetic electron precipitation: multi‐event analysis of its spatial extent during EMIC wave activity. Journal of Geophysical Research: Space Physics, 124, 2466–2483. https://doi.org/10.1029/2018JA026291

  • Li, W., Shen, X.‐C.*, Ma, Q.*, Capannolo, L., Shi, R.*, Redmon, R. J., et al (2019). Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss. Geophysical Research Letters, 46, 3615–3624. https://doi.org/10.1029/2019GL082095

  • Capannolo, L., Li, W., Ma, Q.*, Chen, L., Shen, X.‐C.*, Spence, H. E., et al (2019). Direct Observation of Sub‐Relativistic Electron Precipitation Potentially Driven by EMIC Waves. Geophysical Research Letters, 46, 12711–12721. https://doi.org/10.1029/2019GL084202

  • Li, W., & Hudson, M. K. (2019). Earth's Van Allen Radiation Belts: From Discovery to the Van Allen Probes Era. Journal of Geophysical Research: Space Physics, 124, 8319–8351. https://doi.org/10.1029/2018JA025940

  • Li, W., Ma, Q.*, Bortnik, J. and Thorne, R. M. (2020). Recent Advances in Understanding Radiation Belt Electron Dynamics Due to Wave–Particle Interactions. In Dayside Magnetosphere Interactions (eds Q. Zong, P. Escoubet, D. Sibeck, G. Le and H. Zhang). doi:10.1002/9781119509592.ch12

  • Ma, Q.*, Connor, H. K., Zhang, X.‐J., Li, W., Shen, X.‐C., Gillespie, D., et al. (2020). Global Survey of Plasma Sheet Electron Precipitation due to Whistler Mode Chorus Waves in Earth’s Magnetosphere. Geophysical Research Letters, 47, e2020GL088798. https://doi.org/10.1029/2020GL088798.

  • Angelopoulos, V., E. Tsai, L. Bingley, C. Shaffer, D. L. Turner, A. Runov, W. Li, et al. (2020). The ELFIN Mission. Space Sci Rev 216, 103. https://doi.org/10.1007/s11214-020-00721-7.

  • Breneman, A. W., Halford, A. J., Millan, R. M., Woodger, L. A., Zhang, X.‐J., Sandhu, J. K., Capannolo, L., Li, W., Ma, Q., Cully, C. M., Murphy, K. R., Brito, T., Elliott, S. S. (2020). Driving of outer belt electron loss by solar wind dynamic pressure structures: Analysis of balloon and satellite data. Journal of Geophysical Research: Space Physics, 125, e2020JA028097. https://doi.org/10.1029/2020JA028097.

  • Li, J., Bortnik, J., Ma, Q., Li, W., Shen, X., Nishimura, Y., et al. (2021). Multi‐Point Observations of Quasiperiodic Emission Intensification and Effects on Energetic Electron Precipitation. Journal of Geophysical Research: Space Physics, 126, e2020JA028484. https://doi.org/10.1029/2020JA028484.

  • Capannolo, L., Li, W., Spence, H., Johnson, A. T., Shumko, M., Sample, J., & Klumpar, D. (2021). Energetic Electron Precipitation Observed by FIREBIRD‐II Potentially Driven by EMIC Waves: Location, Extent, and Energy Range from a Multi‐Event Analysis. Geophysical Research Letters, 48, e2020GL091564. https://doi.org/10.1029/2020GL091564.

  • Zhang, X.‐J., Mourenas, D., Shen, X.‐C., Qin*, M., Artemyev, A. V., Ma, Q., W. Li et al. (2021). Dependence of relativistic electron precipitation in the ionosphere on EMIC wave minimum resonant energy at the conjugate equator. Journal of Geophysical Research: Space Physics, 126, e2021JA029193. https://doi.org/10.1029/2021JA029193.

  • Ma, Q.*, Li, W., Zhang, X.-J., Bortnik, J., Shen, X.-C.*, Connor, H. K., et al. (2021).  Global Survey of Electron Precipitation due to Hiss Waves in the Earth's Plasmasphere and Plumes. Journal of Geophysical Research: Space Physics, 126, e2021JA029644. https://doi.org/10.1029/2021JA029644.

  • Capannolo, L.*, W. Li, and S. Huang (2022), Identification and Classification of Relativistic Electron Precipitation Events at Earth Using Supervised Deep Learning. Frontiers in Astronomy and Space Sciences, doi:10.3389/fspas.2022.858990.

  • Capannolo, L.*, Li, W., Millan, R., Smith, D., Sivadas, N., Sample, J., & Shekhar, S. (2022). Relativistic Electron Precipitation Near Midnight: Drivers, Distribution, and Properties. Journal of Geophysical Research: Space Physics, 127, e2021JA030111. https://doi-org/10.1029/2021JA030111.

  • Qin, M.*, Li, W., Ma, Q., Woodger, L., Millan, R., Shen, X.-C., & Capannolo, L.* (2021). Multi-point observations of modulated whistler-mode waves and energetic electron precipitation. Journal of Geophysical Research: Space Physics, 126, e2021JA029505. https://doi.org/10.1029/2021JA029505.

  • Bortnik, J.Albert, J. M.Artemyev, A.Li, W., Jun, C.-W.Grach, V. S., &  Demekhov, A. G. (2022). Amplitude dependence of nonlinear precipitation blocking of relativistic electrons by large amplitude EMIC wavesGeophysical Research Letters49, e2022GL098365. https://doi.org/10.1029/2022GL098365.

  • Ma, Q.Gu, W.Claudepierre, S. G.Li, W.Bortnik, J.Hua, M., & Shen, X.-C. (2022).  Electron scattering by very-low-frequency and low-frequency waves from ground transmitters in the Earth's inner radiation belt and slot regionJournal of Geophysical Research: Space Physics127, e2022JA030349. https://doi.org/10.1029/2022JA030349.

  • Yin, Z.-F., Zhou, X.-Z., Li, W., Shen, X.-C., Rankin, R., Liu, J., et al. (2023). Characteristics of electron precipitation directly driven by poloidal ULF waves. Journal of Geophysical Research: Space Physics, 128, e2022JA031163. https://doi.org/10.1029/2022JA031163

  • Shen, X.-C., Li, W., Capannolo, L., Ma, Q., Qin, M., Artemyev, A. V., et al. (2023). Modulation of energetic electron precipitation driven by three types of whistler mode waves. Geophysical Research Letters, 50, e2022GL101682. https://doi.org/10.1029/2022GL101682.

  • Gan, L., Artemyev, A., Li, W., Zhang, X.-J., Ma, Q., Mourenas, D., et al. (2023). Bursty energetic electron precipitation by high-order resonance with very-oblique whistler-mode waves. Geophysical Research Letters, 50, e2022GL101920. https://doi.org/10.1029/2022GL101920.

  • Angelopoulos, V., X.-J. Zhang, A.V. Artemyev, D. Mourenas, E. Tsai, C. Wilkins, A. Runov, J. Liu, D. L. Turner, W. Li et al. (2023), Energetic Electron Precipitation Driven by Electromagnetic Ion Cyclotron Waves from ELFIN’s Low Altitude Perspective. Space Sci Rev 219, 37. https://doi.org/10.1007/s11214-023-00984-w

  • Capannolo, L., Li, W., Ma, Q., Qin, M., Shen, X.-C., Angelopoulos, V., et al. (2023). Electron precipitation observed by ELFIN using proton precipitation as a proxy for electromagnetic ion cyclotron (EMIC) waves. Geophysical Research Letters, 50, e2023GL103519. https://doi.org/10.1029/2023GL103519

  • Qin, M., Li, W., Ma, Q., Shen, X.-C., Woodger, L., Millan, R. and Angelopoulos, V (2024), Large-scale magnetic field oscillations and their effects on modulating energetic electron precipitation. Front. Astron. Space Sci. 11:1253668. doi: 10.3389/fspas.2024.1253668

  • Gan*, L, Li, W., Hanzelka, M., Ma, Q., Albert, J. M. and Artemyev, A. V. (2023) Electron precipitation caused by intense whistler-mode waves: combined effects of anomalous scattering and phase bunching. Front. Astron. Space Sci. 10:1322934. doi: 10.3389/fspas.2023.1322934

  • Qin, M., Li, W., Shen, X.-C., Angelopoulos, V., Selesnick, R., Capannolo, L., et al. (2024). Global survey of energetic electron precipitation at low Earth orbit observed by ELFIN. Geophysical Research Letters, 51, e2023GL105134. https://doi.org/10.1029/2023GL105134

  • Hanzelka, M., Li, W., Qin, M., Capannolo, L., Shen, X., Ma, Q., et al. (2024). Sub-MeV electron precipitation driven by EMIC waves through nonlinear fractional resonances. Geophysical Research Letters, 51, e2023GL107355. https://doi.org/10.1029/2023GL107355

  • Capannolo, L., Marshall, R., Li, W., Berland, G., Duderstadt, K., Sivadas, N., et al. (2024). Unraveling the atmospheric energy input and ionization due to EMIC-driven electron precipitation from ELFIN observations. AGU Advances, 5, e2023AV001096. https://doi.org/10.1029/2023AV001096

bottom of page