top of page

Quantifying Energetic Particle Precipitation Driven by Magnetospheric Waves

Particle precipitation into the upper atmosphere is an important loss process in the Earth's inner magnetosphere and the driver of pulsating and diffuse aurora. Magnetospheric waves, which play a dominant role in causing energetic electron precipitation loss, include whistler-mode chorus, plasmaspheric hiss, and ElectroMagnetic Ion Cyclotron (EMIC) waves. We study the quantitative roles of chorus, hiss, and EMIC waves in energetic electron precipitation using conjugate satellite observations (Van Allen Probes, THEMIS, POES, FIREBIRD) and modeling.

Electrons precipitating into the upper atmosphere through pitch angle

scattering by whistler-mode chorus waves [Li et al., GRL, 2013].

Selected Publications on This Topic:

  • Li, W., J. Bortnik, Y. Nishimura, R. M. Thorne, and V. Angelopoulos, The origin of pulsating aurora: modulated whistler mode chorus waves (2012), in Auroral phenomenology and magnetospheric processes: Earth and other planets, Geophys. Monogr. Ser., Vol. 197, edited by Andreas Keiling, Eric Donovan, Fran Bagenal, and Tomas Karlsson, pp. 379-388, AGU, Washington D. C.

  • Li, W., B. Ni, R. M. Thorne, J. Bortnik, J. C. Green, C. A. Kletzing, W. S. Kurth, and G. B. Hospodarsky (2013), Constructing the global distribution of chorus wave intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes, Geophys. Res. Lett., 40,4526–4532, doi:10.1002/grl.50920.

  • Li, W., B. Ni, R. M. Thorne, J. Bortnik, Y. Nishimura, J. C. Green, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, H. E. Spence, G. D. Reeves, J. B. Blake, J. F. Fennell, S. G. Claudepierre, and X. Gu (2014), Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis, Geophys. Res. Lett., 41, 1085–1092, doi:10.1002/2013GL059132.

  • Li, W., et al. (2014), Evidence of stronger pitch angle scattering loss caused by oblique whistler-mode waves as compared with quasi-parallel waves, Geophys. Res. Lett., 41, 6063-6070, doi:10.1002/2014GL061260.

  • Nishimura, Y., J. Bortnik, W. Li, R. M. Thorne, L. R. Lyons, V. Angelopoulos, S. B. Mende, J. W. Bonnell, O. Le Contel, C. Cully, R. Ergun, U. Auster (2010), Identifying the driver of pulsating aurora, Science, 330 (6000), doi:10.1126/science.1193186, 81-84.

  • Nishimura, Y., J. Bortnik, W. Li, R. M. Thorne, L. Lyons, V. Angelopoulos, S. B. Mende, J. Bonnell, O. Le Contel, C. Cully, R Ergun, and U. Auster (2011), Estimation of magnetic field mapping accuracy using the pulsating aurora-chorus connection, Geophys. Res. Lett., 38, L14110, doi:10.1029/2011GL048281.

  • Nishimura, T., J. Bortnik, W. Li, R. M. Thorne, B. Ni, L. R. Lyons, V. Angelopoulos, Y. Ebihara, J. W. Bonnell, O. Le Contel, and H.-U. Auster (2013), Structures of dayside whistler-mode waves deduced from conjugate diffuse aurora, J. Geophys. Res. Space Physics, 118, 664–673, doi:10.1029/2012JA018242.

  • Nishimura, Y., J. Bortnik, W. Li, L. R. Lyons, E. F. Donovan, V. Angelopoulos, and S. B. Mende (2014), Evolution of nightside subauroral proton aurora caused by transient plasma sheet flows, J. Geophys. Res. Space Physics, 119, 5295–5304, doi:10.1002/2014JA020029.

  • Ni, B., W. Li, R. M. Thorne, J. Bortnik, J. C. Green, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, and M. de Soria-Santacruz (2014), A novel technique to construct the global distribution of whistler mode chorus wave intensity using low-altitud68e POES electron data, J. Geophys. Res. Space Physics, 119, 5685–5699, doi:10.1002/2014JA019935.

  • Zhang, X.-J., W. Li, Q. Ma, R. M. Thorne, V. Angelopoulos, J. Bortnik, L. Chen, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, et al. (2016), Direct Evidence for EMIC Wave Scattering of Relativistic Electrons in Space, J. Geophys. Res. Space Physics, 121, 6620–6631, doi:10.1002/2016JA022521.

  • Nishimura, Y., Bortnik, J., Li, W., Angelopoulos, V., Donovan, E. F., & Spanswick, E. L. (2018). Comment on “Pulsating auroras produced by interactions of electrons and time domain structures” by Mozer et al. Journal of Geophysical Research: Space Physics, 123, 2064–2070. https://doi.org/10.1002/2017JA024844.

  • Capannolo, L., Li, W., Ma, Q.*, Zhang, X.‐J., Redmon, R. J., Rodriguez, J. V., et al (2018). Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multi‐Satellite Measurements. Geophysical Research Letters, 45, 6755–6765. https://doi.org/10.1029/2018GL078604

  • Capannolo, L., Li, W., Ma, Q.*, Shen, X.‐C.*, Zhang, X.‐J., Redmon, R. J., et al (2019). Energetic electron precipitation: multi‐event analysis of its spatial extent during EMIC wave activity. Journal of Geophysical Research: Space Physics, 124, 2466–2483. https://doi.org/10.1029/2018JA026291

  • Li, W., Shen, X.‐C.*, Ma, Q.*, Capannolo, L., Shi, R.*, Redmon, R. J., et al (2019). Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss. Geophysical Research Letters, 46, 3615–3624. https://doi.org/10.1029/2019GL082095

  • Capannolo, L., Li, W., Ma, Q.*, Chen, L., Shen, X.‐C.*, Spence, H. E., et al (2019). Direct Observation of Sub‐Relativistic Electron Precipitation Potentially Driven by EMIC Waves. Geophysical Research Letters, 46, 12711–12721. https://doi.org/10.1029/2019GL084202

  • Li, W., & Hudson, M. K. (2019). Earth's Van Allen Radiation Belts: From Discovery to the Van Allen Probes Era. Journal of Geophysical Research: Space Physics, 124, 8319–8351. https://doi.org/10.1029/2018JA025940

  • Li, W., Ma, Q.*, Bortnik, J. and Thorne, R. M. (2020). Recent Advances in Understanding Radiation Belt Electron Dynamics Due to Wave–Particle Interactions. In Dayside Magnetosphere Interactions (eds Q. Zong, P. Escoubet, D. Sibeck, G. Le and H. Zhang). doi:10.1002/9781119509592.ch12

bottom of page