top of page

Characteristics and Generation of Various Earth's Magnetospheric Waves

Plasma waves in space play an important role in changing the energy and momentum of particles with different energy and species. We study the generation of various Earth's magnetospheric waves including whistler-mode chorus, plasmaspheric hiss, VLF transmitter waves, lightning generated whistlers, magnetonosic waves, and electromagnetic ion cyclotron (EMIC) waves using multi-satellite observations, theory, and ray tracing.

Schematic illustration of the spatial distribution of important waves

in the inner magnetosphere [Thorne, GRL, 2010]

 

Waves measured by the Van Allen Probes EMFISIS instrument

Selected Publications on This Topic:

  • Li, W., R. M. Thorne, N. P. Meredith, R. B. Horne, J. Bortnik, Y. Y. Shprits, and B. Ni (2008), Evaluation of whistler mode chorus amplification during an injection event observed on CRRES, J. Geophys. Res., 113, A09210, doi:10.1029/2008JA013129.

  • Li, W., R. M. Thorne, V. Angelopoulos, J. W. Bonnell, J. P. McFadden, C. W. Carlson, O. LeContel, A. Roux, K. H. Glassmeier, and H. U. Auster (2009), Evaluation of whistler-mode chorus intensification on the nightside during an injection event observed on the THEMIS spacecraft, J. Geophys. Res., 114, A00C14, doi:10.1029/2008JA013554.

  • Li, W., R. M. Thorne, V. Angelopoulos, J. Bortnik, C. M. Cully, B. Ni, O. LeContel, A. Roux, U. Auster, and W. Magnes (2009), Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft, Geophys. Res. Lett., 36, L09104, doi:10.1029/2009GL037595 (GRL Cover and Editor’s Highlights).

  • Bortnik, J., W. Li, R. M. Thorne, V. Angelopoulos, C. Cully, J. Bonnell, O. Le Contel, and A. Roux (2009), An observation linking the origin of plasmaspheric hiss to discrete chorus emissions, Science, Vol. 324, Iss. 5928, p. 775, doi:10.1126/science.1171273.

  • Li, W., R. M. Thorne, J. Bortnik, Y. Nishimura, and V. Angelopoulos (2011), Modulation of whistler mode chorus waves: 1. Role of compressional Pc4–5 pulsations, J. Geophys. Res., 116, A06205, doi:10.1029/2010JA016312.

  • Li, W., J. Bortnik, R. M. Thorne, Y. Nishimura, V. Angelopoulos, and L. Chen (2011), Modulation of whistler mode chorus waves: 2. Role of density variations, J. Geophys. Res., 116, A06206, doi:10.1029/2010JA016313.

  • Li, W., R. M. Thorne, J. Bortnik, Y. Y. Shprits, Y. Nishimura, V. Angelopoulos, C. C. Chaston, O. LeContel, J. W. Bonnell (2011), Typical properties of rising and falling tone chorus waves, Geophys. Res. Lett., 38, L14103, doi:10.1029/2011GL047925.

  • Li, W., J. Bortnik, R. M. Thorne, and V. Angelopoulos (2011), Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations, J. Geophys. Res., 116, A12205, doi:10.1029/2011JA017035.

  • Min, K., J. Lee, K. Keika, and W. Li (2012), Global distribution of EMIC waves derived from THEMIS observations, J. Geophys. Res., 117, A05219, doi:10.1029/2012JA017515.

  • Chen, L., W. Li, J. Bortnik, and R. M. Thorne (2012), Amplification of whistler-mode hiss inside the plasmasphere, Geophys. Res. Lett., 39, L08111, doi:10.1029/2012GL051488.

  • Li, W., R. Thorne, J. Bortnik, R. McPherron, Y. Nishimura, V. Angelopoulos, and I. G. Richardson (2012), Evolution of chorus waves and their source electrons during storms driven by corotating interaction regions, J. Geophys. Res., 117, A08209, doi:10.1029/2012JA017797.

  • Li, W., R. M. Thorne, J. Bortnik, X. Tao, and V. Angelopoulos (2012), Characteristics of hiss-like and discrete whistler-mode emissions, Geophys. Res. Lett., 39, L18106, doi:10.1029/2012GL053206.

  • Li, W., J. Bortnik, R. M. Thorne, C. M. Cully, L. Chen, V. Angelopoulos, Y. Nishimura, J. B. Tao, J. W. Bonnell, and O. LeContel (2013), Characteristics of the Poynting flux and wave normal vectors of whistler-mode waves observed on THEMIS, J. Geophys. Res. Space Physics, 118, 1461-1471, doi:10.1002/jgra.50176.

  • Ma, Q., W. Li, R. M. Thorne, V. Angelopolous (2013), Global distribution of equatorial magnetosonic waves observed by THEMIS, Geophys. Res. Lett., 40, 1895-1901, doi:10.1002/grl.50434.

  • Li, W., et al. (2013), An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons, Geophys. Res. Lett., 40, 3798–3803, doi:10.1002/grl.50787.

  • Ma, Q., W. Li, L. Chen, R. M. Thorne, and V. Angelopoulos (2014), Magnetosonic wave excitation by ion ring distributions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 119, 844-852, doi:10.1002/2013JA019591.

  • Gao, X., W. Li, R. M. Thorne, J. Bortnik, V. Angelopoulos, Q. Lu, X. Tao, and S. Wang (2014), New evidence for generation mechanisms of discrete and hiss-like whistler mode waves, Geophys. Res. Lett., 41, 4805-4811, doi:10.1002/2014GL060707.

  • Ma, Q., W. Li, L. Chen, R. M. Thorne, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, G. D. Reeves, M. G. Henderson, and H. E. Spence (2014), The trapping of equatorial magnetosonic waves in the Earth's outer plasmasphere, Geophys. Res. Lett., 41, 6307-6313, doi:10.1002/2014GL061414.

  • Li, W., L. Chen, J. Bortnik, R. M. Thorne, V. Angelopoulos, C. A. Kletzing, W. S. Kurth, and G. B. Hospodarsky (2015), First evidence for chorus at a large geocentric distance as a source of plasmaspheric hiss: Coordinated THEMIS and Van Allen Probes observation, Geophys. Res. Lett., 42, 241-248, doi:10.1002/2014GL062832.

  • Li, W., Q. Ma, R. M. Thorne, J. Bortnik, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, and Y. Nishimura (2015), Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their Effects on radiation belt electron dynamics, J. Geophys. Res. Space Physics, 120, 3393-3405, doi:10.1002/2015JA021048.

  • Zhou, C., W. Li, R. M. Thorne, J. Bortnik, Q. Ma, X. An, X.-j. Zhang, V. Angelopoulos, B. Ni, X. Gu, et al. (2015), Excitation of dayside chorus waves due to magnetic field line compression in response to interplanetary shocks, J. Geophys. Res. Space Physics, 120, 8327–8338, doi:10.1002/2015JA021530.

  • Li, W., O. Santolik, J. Bortnik, R. M. Thorne, C. A. Kletzing, W. S. Kurth, and G. B. Hospodarsky (2016), New chorus wave properties near the equator from Van Allen Probes wave observations, Geophys. Res. Lett., 43, 4725–4735, doi:10.1002/2016GL068780.

  • Li, W., D. Mourenas, A. V. Artemyev, J. Bortnik, R. M. Thorne, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, G. D. Reeves, H. O. Funsten, and H. E. Spence (2016), Unraveling the generation mechanism of very oblique lower-band chorus waves, Geophys. Res. Lett., 43, 8867–8875, doi:10.1002/2016GL070386.

  • Zhang, X.-J., W. Li, R. M. Thorne, V. Angelopoulos, J. Bortnik, C. A. Kletzing, W. S. Kurth, and G. B. Hospodarsky (2016), Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes, Geophys. Res. Lett., 43, 12,348–12,355, doi:10.1002/2016GL071158.

  • Taubenschuss, U., O. Santolik, H. Breuilard, W. Li, and O. LeContel (2016), Poynting vector and wave vector direction of equatorial chorus, J. Geophys. Res. Space Physics, 121, 11,912–11,928, doi:10.1002/2016JA023389.

  • Li, J., J. Bortnik, W. Li et al. (2017), Coherently modulated Whistler Mode Waves Simultaneously Observed Over Unexpectedly Large Spatial Scales, J. Geophys. Res. Space Physics, 122, 1871–1882, doi:10.1002/2016JA023706.

  • Li, J., J. Bortnik, W. Li et al. (2017), “Zipper-Like” Periodic Magnetosonic Waves: Van Allen Probes, THEMIS, and Magnetospheric Multiscale Observations, J. Geophys. Res. Space Physics, 122, 1600–1610, doi:10.1002/2016JA023536.

  • Ma, Q.*, D. Mourenas, W. Li, A. Artemyev, and R. M. Thorne (2017), VLF waves from ground-based transmitters observed by the Van Allen Probes: Statistical model and effects on plasmaspheric electrons, Geophys. Res. Lett., 44, 6483–6491, doi:10.1002/2017GL073885.

  • Shi, R.*, Li, W., Ma, Q.*, Reeves, G. D., Kletzing, C. A., Kurth, W. S., … Claudepierre, S. G. (2017). Systematic evaluation of low-frequency hiss and energetic electron injections. Journal of Geophysical Research: Space Physics, 122, 10,263–10,274. https://doi.org/10.1002/2017JA024571.

  • Ma, Q.*, Artemyev, A. V., Mourenas, D., Li, W., Thorne, R. M., Kletzing, C. A.,…Wygant, J. (2017). Very oblique whistler mode propagation in the radiation belts: Effects of hot plasma and Landau damping. Geophysical Research Letters, 44, 12,057–12,066. https://doi.org/10.1002/2017GL075892.

  • Li, J., Bortnik, J., An, X., Li, W., Thorne, R. M., Zhou, M., Kurth, W. S., Hospodarsky, G. B., Funsten, H. O. & Spence, H. E. (2017). Chorus Wave Modulation of Langmuir Waves in the Radiation Belts. Geophysical Research Letters, 44, 11,713–11,721. https://doi.org/10.1002/2017GL075877.

  • Shi, R.*, Mourenas, D., Artemyev, A., Li, W., & Ma, Q*. (2018). Highly oblique lower‐band chorus statistics: Dependencies of wave power on refractive index and geomagnetic activity. Journal of Geophysical Research: Space Physics, 123, 4767–4784. https://doi.org/10.1029/2018JA025337

  • Meredith N.P., R.B. Horne, T. Kersten, W. Li, J. Bortnik, A. Sicard‐Piet, and K.H. Yearby. (2018), Global model of plasmaspheric hiss from multiple satellite observations, J. Geophys. Res. Space Physics, 123. https://doi.org/10.1029/2018JA025226.

  • Shi, R.*, Li, W., Ma, Q.*, Claudepierre, S. G., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Reeves, G. D., Fennell, J. F., Blake, J. B., Thaller, S. A., and Wygant, J. R. (2018), Van Allen Probes observation of plasmaspheric hiss modulated by injected energetic electrons, Ann. Geophys., 36, 781-791, https://doi.org/10.5194/angeo-36-781-2018.

  • Teng, S., Tao, X., Li, W., Qi, Y., Gao, X., Dai, L., Lu, Q., and Wang, S. (2018), A statistical study of the spatial distribution and source-region size of chorus waves using Van Allen Probes data, Ann. Geophys., 36, 867-878, https://doi.org/10.5194/angeo-36-867-2018.

  • Li, J., Bortnik, J., An, X., Li, W., Russell, C. T., Zhou, M., et al. (2018). Local excitation of whistler mode waves and associated Langmuir waves at dayside reconnection regions. Geophysical Research Letters, 45, 8793–8802. https://doi.org/10.1029/2018GL078287

  • Shi, R.*, Li, W., Ma, Q.*, Green, A., Kletzing, C. A., Kurth, W. S., et al. (2019). Properties of whistler mode waves in Earth's plasmasphere and plumes. Journal of Geophysical Research: Space Physics, 124, 1035– 1051. https://doi.org/10.1029/2018JA026041

  • Gao, X., Chen, L., Li, W., Lu, Q., & Wang, S. (2019). Statistical Results of the Power Gap between Lower‐band and Upper‐band Chorus Waves. Geophysical Research Letters, 46, 4098–4105. https://doi.org/10.1029/2019GL082140

  • Teng, S., Tao, X., & Li, W. (2019). Typical characteristics of whistler mode waves categorized by their spectral properties using Van Allen Probes observations. Geophysical Research Letters, 46, 3607–3614. https://doi.org/10.1029/2019GL082161

  • Shen, X.-C.*, W. Li, Ma, Q.*, Agapitov, O., & Nishimura, Y. (2019). Statistical analysis of transverse size of lower band chorus waves using simultaneous multi‐satellite observations. Geophysical Research Letters, 46, 5725–5734. https://doi.org/10.1029/2019GL083118

  • Teng, S., Li, W., Tao, X., Shen, X.‐C.*, & Ma, Q.* (2019). Characteristics of rising tone whistler mode waves inside the Earth's plasmasphere, plasmaspheric plumes, and plasmatrough. Geophysical Research Letters, 46, 7121– 7130. https://doi.org/10.1029/2019GL083372

  • Teng, S., Li, W., Tao, X., Ma, Q.*, & Shen, X.‐C.* (2019). Characteristics and Generation of Low Frequency Magnetosonic Waves Below the Proton Gyrofrequency. Geophysical Research Letters, 46, 11652–11660. https://doi.org/10.1029/2019GL085372.

  • Li, J., J. Bortnik, X. An, W. Li, C. T. Russell, X.-C. Shen* et al. (2019), Origin of two-band chorus in the Earth’s radiation belt, Nature Communication, 10, 4672, 10.1038/s41467-019-12561-3.

  • Ma, Q.*, Li, W., Bortnik, J., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., & Wygant, J. R. (2019). Global Survey and Empirical Model of Fast Magnetosonic Waves Over Their Full Frequency Range in Earth's Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 124, 10270–10282. https://doi.org/10.1029/2019JA027407

  • Teng, S., Li, W., Tao, X., Ma, Q.*, Wu, Y., Capannolo, L., Shen, X.-C*, and Gan, L (2019). Generation and Characteristics of Unusual High Frequency EMIC Waves. Geophysical Research Letters, 46, 14230–14238. https://doi.org/10.1029/2019GL085220

  • Meredith, N. P., Horne, R. B., Shen, X.‐C.*, Li, W., & Bortnik, J. (2020). Global Model of Whistler Mode Chorus in the Near‐Equatorial Region (|λm|< 18o). Geophysical Research Letters, 47, e2020GL087311. https://doi.org/10.1029/2020GL08731

  • Green, A., Li, W., Ma, Q., Shen, X.‐C., Bortnik, J., & Hospodarsky, G. B. (2020). Properties of Lightning Generated Whistlers Based on Van Allen Probes Observations and Their Global Effects on Radiation Belt Electron Loss. Geophysical Research Letters, 47, e2020GL089584. https://doi.org/10.1029/2020GL089584.

  • Li, J., Bortnik, J., Ma, Q., Li, W., Shen, X., Nishimura, Y., et al. (2021). Multi‐Point Observations of Quasiperiodic Emission Intensification and Effects on Energetic Electron Precipitation. Journal of Geophysical Research: Space Physics, 126, e2020JA028484. https://doi.org/10.1029/2020JA028484.

  • Shen, X.‐C., Li, W., & Ma, Q. (2021). Periodic Rising and Falling Tone ECH Waves from Van Allen Probes Observations. Geophysical Research Letters, 48, e2020GL091330. https://doi.org/10.1029/2020GL091330.

  • Chen, R.Gao, X.Lu, Q.Chen, L.Tsurutani, B. T.Li, W., et al. (2021). In situ Observations of Whistler‐mode Chorus Waves Guided by Density Ducts. Journal of Geophysical Research: Space Physics126, e2020JA028814. https://doi.org/10.1029/2020JA028814.

  • Meredith, N. P., Bortnik, J., Horne, R. B., Li, W., & Shen, X.‐C. (2021). Statistical investigation of the frequency dependence of the chorus source mechanism of plasmaspheric hiss. Geophysical Research Letters, 48, e2021GL092725. https://doi.org/10.1029/2021GL092725.

  • Li, H.*, Li, W., Ma, Q.*, Nishimura, Y., Yuan, Z., Boyd, A. J., Shen, X.*, Tang, R., and Deng, X. (2021). Attenuation of plasmaspheric hiss associated with the enhanced magnetospheric electric field. Ann. Geophys., 39, 461–470, https://doi.org/10.5194/angeo-39-461-2021.

  • Ma, Q.Gu, W.Claudepierre, S. G.Li, W.Bortnik, J.Hua, M., & Shen, X.-C. (2022).  Electron scattering by very-low-frequency and low-frequency waves from ground transmitters in the Earth's inner radiation belt and slot regionJournal of Geophysical Research: Space Physics127, e2022JA030349. https://doi.org/10.1029/2022JA030349.

  • Chu, X., Bortnik, J., Li, W., Shen, X.-C., Ma, Q., Ma, D., et al. (2023). Distribution and evolution of chorus waves modeled by a neural network: The importance of imbalanced regression. Space Weather, 21, e2023SW003524. https://doi.org/10.1029/2023SW003524.

  • Shen, X.-C., Li, W., Ma, Q., Qin, M., Capannolo, L., Hanzelka, M., et al. (2024). Large amplitude whistler waves in Earth's plasmasphere and plasmaspheric plumes. Geophysical Research Letters, 51, e2023GL105244. https://doi.org/10.1029/2023GL105244

  • Prasad, A., Li, W., Ma, Q., & Shen, X.-C. (2024). Whistler-mode wave generation during interplanetary shock events in the Earth's lunar plasma environment. Geophysical Research Letters, 51, e2023GL107392. https://doi.org/10.1029/2023GL107392

  • Chu, X., Bortnik, J., Shen, X.-C., Ma, Q., Li, W., Ma, D., et al. (2024). Imbalanced regressive neural network model for whistler-mode hiss waves: Spatial and temporal evolution. Journal of Geophysical Research: Space Physics, 129, e2024JA032761. https://doi.org/10.1029/2024JA032761


bottom of page