top of page

Understanding the Relationship Between Various Solar Wind Drivers and Earth's Magnetospheric Dynamics

Understanding the solar wind drivers that influence the dynamic evolution of waves and particles in Earth's magnetosphere is essential for improving space weather prediction. Our research studies the detailed relationships between key solar wind drivers—such as Coronal Mass Ejections (CMEs), High-Speed Streams (HSSs), and Solar Wind Pressure Pulses—and the resulting wave and particle dynamics within Earth's inner magnetosphere using unprecedented multi-satellite observations. Additionally, we leverage large datasets from various space missions and apply advanced machine learning techniques to better specify and predict the state of Earth’s magnetospheric environment, providing a more comprehensive and innovative approach to space weather forecasting.

[Credit: NASA]

Superposed epoch analysis results of efficient electron acceleration (red) and inefficient electron acceleration events (blue). From top to bottom panels show solar wind dynamic pressure, solar wind velocity, interplanetary magnetic field (Bz), electron PSD, and chorus wave intensity [Li W. et al., GRL, 2015].

Selected Publications on This Topic:

  • Li, W., R. Thorne, J. Bortnik, R. McPherron, Y. Nishimura, V. Angelopoulos, and I. G. Richardson (2012), Evolution of chorus waves and their source electrons during storms driven by corotating interaction regions, J. Geophys. Res., 117, A08209, doi:10.1029/2012JA017797.

  • Li, W., R. M. Thorne, J. Bortnik, D. N. Baker, G. D. Reeves, S. G. Kanekal, H. E. Spence, and J. C. Green (2015), Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis, Geophys. Res. Lett., 42, 6906-6915, doi:10.1002/2015GL065342.

  • Gao, X., W. Li, J. Bortnik, R. M. Thorne, Q. Lu, Q. Ma, X. Tao, and S. Wang (2015), The effect of different solar wind parameters upon significant relativistic electron flux dropouts in the magnetosphere, J. Geophys. Res. Space Physics, 120, 4324-4337, doi:10.1002/2015JA021182.

  • Zhou, C.*, W. Li, R. M. Thorne, J. Bortnik, Q. Ma, X. An, X.-j. Zhang, V. Angelopoulos, B. Ni, X. Gu, et al. (2015), Excitation of dayside chorus waves due to magnetic field line compression in response to interplanetary shocks, J. Geophys. Res. Space Physics, 120, 8327–8338, doi:10.1002/2015JA021530.

  • Zhang, X.-J., W. Li, R. M. Thorne, V. Angelopoulos, Q. Ma, J. Li, J. Bortnik, L. Chen, D. N. Baker, G. D. Reeves, H. E. Spence, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, J. B. Blake, and J. F. Fennell (2016), Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event, J. Geophys. Res. Space Physics,121, doi:10.1002/2016JA022517.

  • Yue, C., W. Li, Y. Nishimura, Q. Zong, Q. Ma, J. Bortnik, R. M. Thorne, G. D. Reeves, H. E. Spence, C. A. Kletzing, J. R. Wygant, and M. J. Nicolls (2016), Rapid enhancement of low-energy (<100 eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms, J. Geophys. Res. Space Physics, 121, 6430–6443, doi:10.1002/2016JA022808.

  • Keika, K., M. Spasojevic, W. Li, J. Bortnik, Y. Miyoshi, and V. Angelopoulos (2012), PENGUIn/AGO and THEMIS conjugate observations of whistler mode chorus waves in the dayside uniform zone under steady solar wind and quiet geomagnetic conditions, J. Geophys. Res., 117, A07212, doi:10.1029/2012JA017708.

  • Golden, D. I., M. Spasojevic, W. Li, and Y. Nishimura (2012), An empirical model of magnetospheric chorus amplitude using solar wind and geomagnetic indices, J. Geophys. Res., 117, A12204, doi:10.1029/2012JA018210.

  • Kissinger, J., L. Kepko, D. N. Baker, S. Kanekal, W. Li, R. L. McPherron, and V. Angelopoulos (2014), The importance of storm time steady magnetospheric convection in determining the final relativistic electron flux level, J. Geophys. Res. Space Physics, 119, 7433-7443, doi:10.1002/2014JA019948.

  • Kanekal, S. G., D. N. Baker, M. G. Henderson, W. Li, J. F. Fennell, Y. Zheng, I. G. Richardson, A. Jones, A. F. Ali, S. R. Elkington, et al. (2015), Relativistic electron response to the combined magnetospheric impact of a coronal mass ejection overlapping with a high-speed stream: Van Allen Probes observations, J. Geophys. Res. Space Physics, 120, 7629-7641, doi:10.1002/2015JA021395.

  • Horne, R. B., M. W. Phillips, S. A. Glauert, N.P. Meredith, A. Hands, K. Ryden, and W. Li. (2018), Realistic worst case for a severe space weather event driven by a fast solar wind stream, Space Weather, 16, 1202–1215. https://doi.org/10.1029/2018SW00194

  • Li, W., & Hudson, M. K. (2019). Earth's Van Allen Radiation Belts: From Discovery to the Van Allen Probes Era. Journal of Geophysical Research: Space Physics, 124, 8319–8351. https://doi.org/10.1029/2018JA025940

  • Breneman, A. W., Halford, A. J., Millan, R. M., Woodger, L. A., Zhang, X.‐J., Sandhu, J. K., Capannolo, L., Li, W., Ma, Q., Cully, C. M., Murphy, K. R., Brito, T., Elliott, S. S. (2020). Driving of outer belt electron loss by solar wind dynamic pressure structures: Analysis of balloon and satellite data. Journal of Geophysical Research: Space Physics, 125, e2020JA028097. https://doi.org/10.1029/2020JA028097.

  • Nasi, A, Katsavrias, C, Daglis, IA, Sandberg, I, Aminalragia-Giamini, S, Li, W, Miyoshi, Y, Evans, H, Mitani, T, Matsuoka, A, Shinohara, I, Takashima, T, Hori, T and Balasis, G (2022). An event of extreme relativistic and ultra-relativistic electron enhancements following the arrival of consecutive corotating interaction regions: Coordinated observations by Van Allen Probes, Arase, THEMIS and Galileo satellites. Front. Astron. Space Sci. 9:949788. doi: 10.3389/fspas.2022.949788.

  • Michael, A. T., Sorathia, K. A., Ukhorskiy, A. Y., Albert, J., Shen, X., Li, W., & Merkin, V. G. (2024). Cross-scale modeling of storm-time radiation belt variability. Journal of Geophysical Research: Space Physics, 129, e2023JA032175. https://doi.org/10.1029/2023JA032175.

  • Huang, S., Li, W., Ma, Q., Shen, X.-C., Capannolo, L., & Chu, X. (2024). Modeling global electron precipitation driven by whistler mode waves: Integrating physical and deep learning approaches. Journal of Geophysical Research: Space Physics, 129, e2024JA033089. https://doi.org/10.1029/2024JA033089


 
  • Facebook Clean Grey
  • Twitter Clean Grey
  • LinkedIn Clean Grey

© 2023 by Scientist Personal. Proudly created with Wix.com

bottom of page